Terrænnær redox- og retentions-kortlægning til differentieret målrettet virkemiddelsindsats indenfor ID15 oplande (T-Rex)

Kick-off møde d. 26. januar 2019

Charlotte Kjærgaard, Chefforsker Miljø, SEGES

Dagsorden

Tid	Indhold	Ansvarlig	
9:45 - 10.00	Ankomst, kaffe og morgenbrød		
10.00 - 10.15	Velkomst og præsentaionsrunde		
10.15 - 10.45	T-Rex introduktion til projektet - visioner	Charlotte Kjærgaard	
10.45 - 11.15	AP1. Redox kortlægning	Ejlskov	
11.15 - 11.45	AP2. Kortlægning af markers hydrogeologi og redox-regime	AU_GEO	
11.45 - 12.15	AP3. Rumligt differentieret N retention indenfor ID15 oplande	Anker L Højberg	
12.15 - 13.00	Frokost		
13.00 - 13.30	AP4. Demonstration af effekten af en differentieret målrettet virkemiddelsindsats	Søren Kolind Hvid	
13.30 - 14.00	Projektoplande, valg af projektsites, monitering, lodsejeraftaler/databehandleraftaler	SEGES, Alle	
14.00 - 14.15	Kaffepause		
14.15 - 14.40	Diskussion af samarbejde, synergier/ afhængigheder mellem APs, projektplan	Alle	
14.40 - 14.55	Projektledelse, styregruppe, projektmøder, samarbejdsaftale, kommunikation og web-site	Charlotte Kjærgaard	
14.55 - 15.00	Evt. afrunding		

Partner og deltagerliste

Partner	Deltager	
Ejlskov	Palle Ejlskov Ivan Vela Lars Nebel Jens Elmose	AP1-leder
AU-GEO	Esben Auken Troels N. Vilhelmsen Anders Vest Christiansen Rasmus Rumph Frederiksen Jesper Bjergsted Pedersen Nikolaj Foged	AP2-leder
GEUS	Anker Lajer Højberg Raphael J. M. Schneider	AP3-leder
SEGES	Søren Kolind Hvid Kristoffer Piil Charlotte Kjærgaard Britt Heftholm Ravn Mette Damborg Hansen	AP4-leder Projektleder Koordinator Regnskab

Terrænnær redox- og retentions-kortlægning til differentieret målrettet virkemiddelsindsats indenfor ID15 oplande (T-Rex)

Baggrund

Den målrettede indsats er ikke tilstrækkelig omkostningseffektiv

Målrettet regulering på ID15-skala (Højberg et al., 2015)

Variation i geologi og landskabselementer indenfor 6 ID15-oplande, Norsminde Fjord (Kjærgaard et al., 2017)

Variation i kvælstofretention indenfor ID15-oplande

Ved en gennemsnitlig N-retention på 62% opnås kun en virkemiddelseffekt på 38% effekt -> overimplementering

Differentiering af den målrettede indsats indenfor ID15 opland

Differentiering af den målrettede indsats indenfor ID15 opland

		Virkemiddelspotentiale uden ID15-målretning		Virkemiddelspotentia	le med ID15-målretning
	Målår	Nuværende N-effekt på udledningen kg N ha ⁻¹ år ⁻¹	Arealkrav ved nuværende regulering ha	Målrettet effekt på udledningen kg N ha ⁻¹ år ⁻¹	Arealkrav ved målrettet indsats ha
Efterafgrøder	2021	11,4	228	20,8	125
	2027		333	19,2	197
Udtagning	2021	19,0	137	43,0	60
	2027		200	41,2	92
Minivådområder	2021	6,75	384 (3,84)*	10,9	238 (2,4)*
	2027		562 (5,62)*	10,6	356 (3,6)*
Matrice-	2021	13,5	192 (0,38)*	23,6	110 (0,22)*
minivådområder	2027		281 (0,56)*	23,5	161 (0,32)*

Differentiering af den målrettede indsats indenfor ID15 opland

Økonomisk potentiale

Omkostninger ved målopfyldelse med 2019-reguleringen og en differentieret målrettet indsats for fire virkemidler hhv. efterafgrøder, udtagning, minivådområder og matriceminivådområder for 2021 og 2027

	Indsatsår	Omkostning virkemiddel kr ha⁻¹ år⁻¹	ID15 arealkrav ha	Omkostning ID15 opland kr år⁻¹	ID15 arealkrav ha	Pris ID15 opland kr år⁻¹
Efterafgrøder	2021	700	228	159.250	125	87.309
	2027	700	333	232.750	197	138.091
Udtagning	2021	4000	137	546.000	60	240.240
	2027	4000	200	798.000	92	367.920
Minivådområder	2021	650*	384 (3,84)*	249.744	238 (2,4)*	154.666
	2027	650*	562 (5,62)*	365.011	356 (3,6)*	231.511
Matrice-	2021	380**	192 (0,38)*	73.002	110 (0,22)*	33.102
minivådområder	2027	380**	281 (0,56)*	106.696	161 (0,32)*	61.354

*Omkostning ved minivådområder er opgjort som etableringsomkostninger afskrevet over 10 år

** Omkostningen ved matriceminivådområder er opgjort som etableringsomkostninger afskrevet over 5 år

T-Rex vision

SEGES

Skabe grundlaget for en kortlægning af retentionsklasser (N-udlednings-kortlægning) indenfor ID15-oplande

Variationen i retention indenfor ID15-oplande kan primært tilskrives

- I. Kvælstofomsætning i den ripariske zone (ny viden)
- II. Variationer i dræntransport (ny viden)
- III. Kvælstofretention terrænnært i rodzonen (samt grundvand) begrænset viden

I. Nitratreduktion i vandløbsnære lavbundsarealer

SEGES

Kjærgaard, C. & Hørfarter R. 2018. Potential significance of of riparian lowlands on nitrogen fluxes from agricultural drainage in Danish wate Generation Beneficial States and States and

Riparisk lavbund – afbrudte dræn i skræntfoden langs en ådal

SEGES

Petersen, R.J., Prinds, C., Iversen, B.V., Engesgaard, P., Jessen, S., Kjærgaard, C. Submitted. Nitrogen reduction along variable flow pathways in riparian lowland transects. Submitted Water Res. Research

Lavbundsarealers effekt (nye resultater fra TReNDS www.trends.nitrat.dk)

II. Rumlig geologisk variation styrende for drænafstrømning

Figure 3 A: Model area for the hydrological model and location of tile drain systems. B: Resistivity in depth 0 – 0.5 m measured with DualEM and an interpreted zone of high hydraulic conductivity (High K-zone).

A.L. Hansen^{a,*}, R. Jakobsen^b, J.C. Refsgaard^a, A.L. Højberg^a, B.V. Iversen^c and C. Kjærgaard^d. 2019. Grundwater dynamics and effect of tile drainage on water flow across the redox interface in a Danish Weichsel till area. Advances in Water Resources 123:23-39

II. Rumlig geologisk variation styrende for drænafstrømning

Reference: Hansen, A.L., Højberg, A.L., Iversen, B.V., Kjærgaard, C., Refsgaard, J.C. 2019. Hvad betyder geologien for drænvand? Vand & Jord, nr. 1.

Figur 5. Simulerede årlige afstrømninger i 8 drænoplande samt i hele Fensholt oplandet. SEGES Oplandende er vist efter størrelse med det mindste opland (D6) først. De blå søjler viser usikkerhedsintervallet mellem de 10 forskellige geologier.

II. Nitratreduktion i rodzonen på drænede arealer

Pseudogley er typiske pedologier på morænelerjorde – periodisk vandmætning af jordprofilen grundet lavpermeable lag

Vandspejlsdynamik - højbundsflade

Koblet afstrømnings og redox-dynamik i rodzonen

Hydraulisk begrænsning mellem dræn

Høj permeable zoner over dræn

Tidslig variation i hydro/redox regime umættede zone

Comparison of timing

Faglige udfordringer

- Tidspunkt for måling af Eh
- Korrelation mellem Hh og E
- Eh-respons geokemi-typologi afhængig

A.L. Hansen^{a,*}, R. Jakobsen^b, J.C. Refsgaard^a, A.L. Højberg^a, B.V. Iversen^c and C. Kjærgaard^d. 2019. Grundwater dynamics and effect of tile drainage on water flow across the redox interface in a Danish Weichsel till area. Advances in Water Resources 123:23-39

N-reduktion i rodzonen på minerogen lavbund

AUG FØDE

Vadum redox potentiale

Måned / År

Gandrup redox potentiale

(Drain depth 0.5 m)

Kjærgaard et al., 2015. Reduktion af kvælstof i rodzonen på tre nordjyske lokaliteter.

N-koncentrationer i jordprofilen og drænvand

Lokalitet		Vadum	Aabybro	Gandrup
	Dybde	TN	TN	TN
Prøvetype	m	mg/l	mg/l	mg/l
Jordprofil	0,25-1	6,9	7,5	4,0
Jordprofil	1-2	2,0	2,1	0,3
Dræn¤		1,7-2,0	2,0-3,1	2,3-4,5

^a Drændybderne er Vadum (2 m), Aabybro (2 m) og Gandrup (0,5 m)

Kjærgaard et al., 2015. Reduktion af kvælstof i rodzonen på tre nordjyske lokaliteter.

N-reduktion i rodzonen på minerogen lavbund

Tabel 8. Beregnet og målt korrigeret N-udvaskning samt den beregnede rodzone N-reduktion for måleårene 2013/14 og2014/15

Lokalitet	Periode	Afgrøde	Estimeret N-udvaskning* kg/ha	Målt korrigeret N-udvaskning kg/ha	Beregnet rodzone N- reduktion %
Vadum	2013/14	V.hvede/V.byg	33**	13	61
	2014/15	V.hvede/V.raps	65**	9	86
Aabybro	2013/14	Vinterraps	61	 7	89
	2014/15	Vinterhvede	59	19	68
Gandrup	2013/14	Hestebønne	48	20	58
	2014/15	Vårspelt	42	28	33

*N-LES3 estimeret udvaskning

**N-udvaskning er baseret på et vægtet gennemsnit fra markaraler (Tabel 2)

Kjærgaard et al., 2015. Reduktion af kvælstof i rodzonen på tre nordjyske lokaliteter.

Nitratreduktion i rodzonen – fugtighedsgradienter

Topographical wetness index (TWI)

Nitratreduktion i rodzonen - TWI

Hvad har vi lovet?

- Videreudvikling af en Ejlskov redox-probe fra grundvandsapplikation til redox-kortlægning i rodzonen (umættet zone) mhp at kortlægge redox-potentialet over/mellem dræn (AP1)
- Kombinere nye geofysiske metoder fra rOPEN til kortlægning af terrænnær rumlig geologi og vandmætningsprofil med drængeometri til (i) udvikling af hydrologiske modeller, der beskriver markers klimanormaliserede vandspejls- og drænafstrømningsdynamik samt (ii) samt kortlægning af markens terrænnære redox-dynamik, der føder ind i Ejlskov software (AP2)
- Udvikle en operationel opskalerbar model for kortlægning af rumligt differentierede N-retentionsklasser indenfor ID15-oplande (AP3)
- Demonstrere effekt og omkostningseffektivitet af scenarier for en differentieret målrettet virkemiddelsindsats med såvel mark som drænvirkemidler på markskala indenfor 1D15-oplande (AP4)

Gennemgang af arbejdspakker

