

Ivan Vela

T-Rex project meeting

November 24, 2021

AP1 – Redox kortlægning

1- Redox probe development

2- In-situ measurements

3- Comparison in-situ vs redox probe.

4-Future plans: where is redox going?

STØTTET AF **GUOP** Promilleafgiftsfonden for landbrug

-Continously measuring redox is a very fragile method: only the platine can be exposed

-Push tests at Ejlskov: fat clay and sand = no problem

-Performing measurements at Fensholt below the plow layer = lots of problems

1. Redox probe development

-Finding new ways of mounting the Pt electrode in the probe

- -Making the connections stronger
- -Hammering the probe against a steel plate = OK
- -Fensholt below plow layer = boulders still braking the electrode!

1. Redox probe development

Fensholt 5m corrected P015 0 1 Depth (m.u.t.) w 20201104 20211108 4 5

-250

-500

250

0

Oxidation reduction potential (mV) + 225mV

500

750

1000

-750

-1000

-Finally came at a robust Pt electrode

-But how to know if the electrode brakes down the hole?

-**Dual redox:** two Pt in one probe and new electronics

JOIN OUR MISSION - CLEANING UP THE EARTH

2. In-situ measurements

-Why? We wanted data validation for the redox probe

-Where? At five points in Fensholt close to piezometers and previous redox measurements

-When? 7 times from Oct'20 to Feb'21

2. In-situ measurements

-How?

- 4 depths: 50, 100, 150 & 200 cm
- 2 duplicates each depth
- 3 distances each duplicate
- 3 last measurements
 - 3 different instruments

-3 redox probe measurements close to 3 of the dates

All Redox values are raw - uncorrected

	In-situ	In-situ Ave.	Redox Probe	In-situ	In-situ Ave.	Redox Probe	In-situ	In-situ Ave.	Redox Probe	
In-situ nr.	11-11	-2020	04-11-2020	08-12	-2020	01-12-2020	21-12	-2020	22-12-2020	Probe Pktnr.
11-50-1	-256			-132			-124			
11-50-2	-216	-236	115	-225	-178,5	348	-246	-185	295	
11-100-1	50			88			66			
11-100-2	143	96,5	100	168	128	243	85	75,5	103	
11-150-1	108			191			170			
11-150-2	443	275,5	94.3	456	323,5	199	428	299	133	
11-200-1	-			-			408			
11-200-2	-			-			334	371		P001
21-50-1	-254			-224			-319			
21-50-2	110	-72	28.6	131	-46,5	151	-327	-323	320	
21-100-1	-302			123			109			
21-100-2	-295	-298,5	-251	212	167,5	6.5	160	134,5	80.9	
21-150-1	112			-129			-108			
21-150-2	-242	-65	-241	-412	-270,5	3.1	-403	-255,5	-45	
21-200-1	-			-			-387			
21-200-2	-			-			149	-119	-51	P004

-3 redox probe measurements close to 3 of the dates

31-50-1	447			524			518			
31-50-2	424	435,5	254	491	507,5	358	485	501,5	120	
31-100-1	422			491			471			
31-100-2	426	424	163	481	486	223,2	472	471,5	185	
31-150-1	447			469			446			
31-150-2	413	430	125	466	467,5	141,6	457	451,5	94,6	
31-200-1	409			396			358			
31-200-2	414	411,5	204	439	417,5	50,6	430	394	133,6	P007
41-50-1	-256			-217			-105			
41-50-2	-26	-141	104	149	-34		30	-37,5		
41-100-1	433			472			463			
41-100-2	20	226,5	127	337	404,5		360	411,5		
41-150-1	406			436			440			
41-150-2	394	400	170,4	310	373		387	413,5		
41-200-1	387			411			407			
41-200-2	246	316,5	-86	437	424		444	425,5		P011
61-50-1	-274			-261			-254			
61-50-2	433	79,5	37,1	467	103	287	407	76,5	144,9	
61-100-1	440			141			111			
61-100-2	383	411,5	-30,2	426	283,5	300	385	248	177	
61-150-1	459			211			218			
61-150-2	460	459,5	69,7	390	300,5	276	444	331	152,4	
61-200-1	-			-			492			
61-200-2	-			-			413	452,5	138,05	P014

JOIN OUR MISSION - CLEANING UP THE EARTH

-We have left the redox probe some time underaround to see how the value evolves Jord temp : 2°C

Måleinstrument	Reference <u>electrode</u> hul #	Ledning	Start (0 <u>sek</u>)	Slut (60s)						
Python	1	Gul/PT1	206	198						
Python	1	Sort/PT2	4	13						
Pelicase	1	Gul/PT1	163	159						
Pelicase	1	Sort/PT2	-23	-14						
Pelicase	1	Gul/PT1	139	139						
Pelicase	1	Sort/PT2	-13	-14						
15 min break, ingen målinger, alt koblet fra										
Pelicase	2	Gul/PT1	66	63						
Pelicase	2	Sort/PT2	-93	-89						
Pelicase	2	Gul/PT1	42	48						
Pelicase	2	Sort/PT2	-88	-87						
Python	2	Gul/PT1	75	38						
Python	2	Sort/PT2	-133	-124						

De målinger der er markeret med fed/bold er hvor begge elektroder var tilkoblet pelicasen

-What's the right way to measure?

By continuously moving through the formation and measuring instantly after the Pt is exposed to hthe environment?Or by introducing the Pt into the environment and letting it evolve?

-There's no direct way of knowing!

-We can only infere the right answer by comparing the different redox potential measurements with other parameters associated with oxidated/reduced environments such sediment colour, disolved oxygen, or **nitrate reduction**

-We await on nitrate data interpretation and comparison with in-situ and redox probe to extract a conclusion in T-Rex

-Meanwhile.... Fensholt F1 & F4

Fensholt F5 & F6

Fensholt F7

Fensholt F2

Q

1-5-2020

-Fensholt down to 5m: november 2020

Dear Ivan

Interesting profiles 😊

I have attached some figures on my paper on data from the field in Fensholt – which shows that the nitrate disappears somewhere between 2.5 and 4.5 – and that the depth varies over time – which may implie that you should not expect "absolute" reproducibility when repeating the measurements.

-Fensholt down to 5m repeated: 1 year after and with **Dual Redox**

JOIN OUR MISSION - CLEANING UP THE EARTH

-Meanwhile....

-hypothesis on why in-situ measurements could not reflect real redox conditions in relation to the redox probe:

From Ejlskov's experience, we do have the suspicion that the Pt electrode only measures at the very inmediacy of its surroundings –mm or um-. Thus, when introducing a "dead end" Pt electrode in a plastic, non hydraulicaly conductive material like some parts of the pseudogley, the mere insertion of the Pt rod in the sediment is creating a niche environment that has it's own artificial redox ,uncoupled from the surrounding redox.

Some researches might have got the idea that the in-situ electrodes are the way to go, since they have installed them in non-plastic and hydraulically condutive materials like sand. There is even a company in Holland providing in-situ redox measurements! MVH Consult

4. Future plans: where is redox going in TRex?

-Still hope for some nitrate reduction in the root zone. There might come some research publications?

-Trex tractor's leasing contract ends in May 2022: is it the fastest boring tractor?

