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N-Retention
- focus on clay dominated — shallow dynamic systems

 Spatial variation in drain fraction * Goal:

and riparian overland flow  Mapping variation in drain fraction
within ID15 catchments

* Mapping variation in overland flow
fraction in riparian zones
”shallow dynamics”:

wnmoseiaicne ¢ |Mprove representation of drain
™) Lawdmnracion flow in the DK-Model/N-Model

* Improve mapping of N-retention
potential and its components

* Better impact assessment and
optimization of N-reduction

iparian lowlands
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Figure 1. Concept of the application of the drain model to an ID15 catchment.
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Methods

Precondition:

. F500 F100 F50 F20 F10
Coarse-scale physically-based flow models
* We don’t expect to represent the processes .ﬁ # ] p
correctly _ 5
Small observational data sets L ” T T T
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* Fine-scale physically-based flow models # ; ‘aﬂ
» Cal/val against observation data N “ 1 7 o
¢ Model-generated training data —— i =1 F —
« Assuming we can represent the processes rightat . ' 3l | " ~
high resolution N 5] _ 25 ] £
* Produces large amounts of data 5ok
* Machine learning as a tool to build prediction T
models based on large datasets Noorduijn et al 2021, Journal of Hydrology
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Methods

Overland flow

* Validate fine-scale physically
based flow model for fieldsites

e Statistical perturbation of model
* Model-generated training data

* Machine learning based
prediction model
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Overland flow fraction in the riparian zone (O,

riv

Saskia Noorduijn

c. Entire dataset: fi0..)

STEP 1: Local scale model STEP 3: Riparian

; STEP 5: Statistical model
s segmentation
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Methods

Drain fraction

* Calibrate and validate fine-scale @Q%
physically based flow models mvg;{
from 30 drain catchments =R A

e Supplement with additional o
ungauges drain catchments 0 —

* Generate modelbased training 0
data at high resolution

* Machine learning based L
prediction model ) M &N* M _
Me
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Drain fraction on clay soils f(drain

Raphael Schneider and Hafsa Mahmood

* Mapping of drainfraction from field scale to
high resolution DK scale

* Generate training data from many drain
submodels (Hafsa)

* High resolution (10 m) - thousands of
datapoints

 Sample in national variability
* Geology, topography, recharge

* Select co-variates available nationally at
high resolution (10-30 m)

* Create a machine learning model for
predicting f(drain,, )

* Investigate seasonal dynamics of
drainfraction
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Drain fraction on clay soils f(drain

Co-variates

Legend
Drain/ Recharge fraction
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Improvement of the DK-model and national

nhitrogen model (N-model)
Raphael Schneider and Lars Troldborg K \
Root zone leaching

GEUS and AU (DCE + DCA) ], drain
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Improvement of the DK-model and national

nitrogen model (N-model)

1. Run a submodel of the N-model
based on the 100m DK-model
(Skjern A headwater)
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Improvement of the DK-model and national
nitrogen model (N-model)

1. Run a submodel of the N—modelobased
on the 100m DK-model (Skjern A

headwater)

2. Improve DK-model drain simulation
aided by ML drain fraction map

3. (potentially) Include differentiated N-
reduction potential in riparian
zones/wetlands

Test Skjern A N-model setup at each step
against observed N loads




Skjern A headwater model

Streamflow performance at 4 outlets

NSE fbal
Q250018 0.66 0.05
Q250019 0.76 -0.18
Q250020 0.82 0.04
Q250021 0.43 0.27

average 0.67 0.05

Topography

| Value
| - High : 169.604

- Low : -3.91145




Skjern A headwater model

Probability for artificial drain,
as predicted by machine
learning algorithm (Mgller et al.
2018)
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Skjern A headwater model

Lateral flow fraction

Indicator for areas with:
fratir + fzi102

recharge * shallow groundwater
dynamics
(dominated by local recharge,
low lateral flow fraction)

e complex groundwater

dynamics
(dominated by
lateral/regional flow, high Legand
lateral flow fraction) L
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Skjern A headwater model

Simulated drain fraction
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Skjern A headwater model

First results of 100m N-model
setup

uncalibrated, first results!

Displaying origin of particles
below drain that reach
recipients without being
reduced in groundwater
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Skjern A headwater model

First results of 100m N-model
setup

uncalibrated, first results!

Displaying origin of particles
below drain that reach
recipients without being
reduced in groundwater

Diplayed with drain fraction,
which is used to partition N-
leaching from rootzone (drain
being not reduced)
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Next steps

e Collaborate with  N-Model 100m for . L
AU/Hafsa on Mike SHE Skjern Upstream g.e"".ﬁr '”';'il'
drain models and * Compare and adjust  —p istributed N-
calibration to N-observations retention map for

Skjern Upstream
* gzﬁrsmﬁfja’ggniagﬁlsd . ]ytilize the drain * Deliver updated
raction mapping to istri _
machine learning model =% improve draﬁrﬁ) 8 d'St”b.Uted N
for predicting drain simulations in the N- retention map for
fraction model for Skjern Skjern Upstream
Upstream
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