

T-REX WP3

Spatially differentiated N-retention within ID15 catchments

N-Retention

- focus on clay dominated – shallow dynamic systems

 Spatial variation in drain fraction and riparian overland flow

Figure 1. Concept of the application of the drain model to an ID15 catchment.

- Goal:
- Mapping variation in drain fraction within ID15 catchments
- Mapping variation in overland flow fraction in riparian zones
- Improve representation of drain flow in the DK-Model/N-Model
- Improve mapping of N-retention potential and its components
- Better impact assessment and optimization of N-reduction measured

Methods

Precondition:

- Coarse-scale physically-based flow models
 - We don't expect to represent the processes correctly
- Small observational data sets
 - We cannot make empirical prediction models

Solution:

- Fine-scale physically-based flow models
 - Cal/val against observation data
- Model-generated training data
 - Assuming we can represent the processes right at high resolution
 - Produces large amounts of data
- Machine learning as a tool to build prediction models based on large datasets

Noorduijn et al 2021, Journal of Hydrology

Methods

Overland flow

- Validate fine-scale physically based flow model for fieldsites
- Statistical perturbation of model
- Model-generated training data
- Machine learning based prediction model

Overland flow fraction in the riparian zone f(O_{riv})

Saskia Noorduijn

c. Entire dataset: f(Ortv) f(Oriv) 0.2 0.4 0.6 0.8 1.0 f. Entire dataset: Weighted average $\overline{f(O_{rhy})}_{sub}$ Weighted average $\overline{f(O_{rtv})_{sub}}$

Methods

Drain fraction

- Calibrate and validate fine-scale physically based flow models from 30 drain catchments
- Supplement with additional ungauges drain catchments
- Generate modelbased training data at high resolution
- Machine learning based prediction model

Drain fraction on clay soils f(drain_{clay})

Raphael Schneider and Hafsa Mahmood

- Mapping of drainfraction from field scale to high resolution DK scale
- Generate training data from many drain submodels (Hafsa)
 - High resolution (10 m) thousands of datapoints
- Sample in national variability
 - Geology, topography, recharge
- Select co-variates available nationally at high resolution (10-30 m)
- Create a machine learning model for predicting f(drain_{clav})
- Investigate seasonal dynamics of drainfraction

Drain fraction on clay soils f(drain_{clay})

Improvement of the DK-model and national nitrogen model (N-model)

Raphael Schneider and Lars Troldborg

ID15 scale (retentionskort)

Improvement of the DK-model and national nitrogen model (N-model)

1. Run a submodel of the N-model based on the **100m** DK-model (Skjern Å headwater)

Improvement of the DK-model and national nitrogen model (N-model)

- Run a submodel of the N-model based on the **100m** DK-model (Skjern Å headwater)
- 2. Improve DK-model drain simulation aided by **ML drain fraction map**
- (potentially) Include differentiated Nreduction potential in riparian zones/wetlands

Test Skjern Å N-model setup at each step against observed N loads

Streamflow performance at 4 outlets

	NSE	fbal
Q250018	0.66	0.05
Q250019	0.76	-0.18
Q250020	0.82	0.04
Q250021	0.43	0.27
average	0.67	0.05

Probability for artificial drain, as predicted by machine learning algorithm (Møller et al. 2018)

$$\frac{f_{lat,l1} + f_{z,l1_l2}}{recharge}$$

Lateral flow fractionIndicator for areas with:

- shallow groundwater dynamics (dominated by local recharge, low lateral flow fraction)
- complex groundwater dynamics (dominated by lateral/regional flow, high lateral flow fraction)

Simulated drain fraction

 $\frac{drain}{recharge}$

First results of 100m N-model setup

uncalibrated, first results!

Displaying origin of particles below drain that reach recipients without being reduced in groundwater

First results of 100m N-model setup

uncalibrated, first results!

Displaying origin of particles below drain that reach recipients without being reduced in groundwater

Diplayed with drain fraction, which is used to partition N-leaching from rootzone (drain being **not** reduced)

Next steps

 Collaborate with AU/Hafsa on Mike SHE drain models and calibration

 Based on Hafsas simulations build machine learning model for predicting drain fraction

 Compare and adjust to N-observations

 Utilize the drain fraction mapping to improve drain simulations in the Nmodel for Skjern Upstream

 Deliver initial distributed Nretention map for Skjern Upstream

