Diversity and biology of potato blackleg causing Pectobacteriaceae

STØTTET AF

Jan van der Wolf

Kartoffelafgiftsfonden

Aarhus, 7 December 2021

Outline presentation

- Diversity
- Initial infection
- Colonization
- Spread
- Disease expression

Diversity

Diversity blackleg causative agents

New: P. quasiaquaticum and D. parazeae (water)

Blackleg causing capacity can be clade/strain specific

TaqMan assays for blackleg causing Pbr strains

Comparison of vPbr assays based on two loci in a triplex setting (v. d. Lee & v. Gent)

TaqMan Pbr (Muzhinji et al., 2020) with vPbr assay 9

Comparison based on 172 field samples from 2 farms

Initial infection

Soil as contamination source: survival planktonic cells (6-8 °C, 50% FC in peat soil)

Soil as contamination source: Survival in rotten potato stems in peat soil (6-8 °C, 50% FC)

Weeds as contamination source

- In Scotland and the USA, in 71 of 130 weed species 'Erwinia' was found
 - Mainly 'P. carotovorum' (67 -98%)
 - Mainly during the growing season
- In Israel, Cyperus rotundus was found symptomless infected with Dickeya solani in 7-14% of the plants, but not 10 other plant species (Tsror et al., 2010)

Rain water as contamination source

- 'P. carotovorum' recovered from 80% of ocean- and rain- water cells
- 5% of rocky mountain snow samples yielded `*P. carotovorum*'
- Cells are active as cloud condensation nuclei
- They are transported with cloud systems
- And deposited in precipitation at inland sites
- However, in 2021 in NL no indications were found for the presence of SRP in rainwater during growing season (in total 20 samples from 10 places

Aerosols as contamination source I

Nr of Pectobacterium cells released during <u>flailing</u>								
Experiment	Pectobacterium, "disease-free" crop	Pectobacterium in symptomatic crop						
1	5x10 ⁸ /ha	10 ⁸ /ha						
2	7x10 ⁷ /ha	8x10 ⁷ /ha						

- Pectobacterium can survive in aerosols 2 h at 65% RH and 18 °C
- Estimated nrs Pectobacterium cells deposited per m² from aerosols:
 - Distance to source 50 m : 1000
 - Distance to source 100 m: 100
 - Distance to source 1000 m: 3

Aerosols as contamination source (II)

Set up experiment

- Seed potato field crops in NL with and without blackleg symptomatic plants
- Experimental field Dsol infected plants (inoculated seed)
- Air sampling: 20 min (plant growth) or 10 min (during haulm destruction)
- During haulm destruction: sampling on machine
- Enrichment TaqMan + metagenomics

300 L air/min

Moments of sampling

Selection

Spraying pesticides

Chemical haulm destruction

Flailing

					Symptom																				
TaaMan		Data	Cron	Action	atic plants	S		Dhr	_	Deal		Data		Dada	Dhoto										
laqivian		Date	Сгор	ACTION	in neid	итрс					1 \\\/ D														
results	1	luno	Evo Eield	Selection	v																				
icsuits	2	June	Exp. Field	Selection	I N																				
	2	luno	Evo Field	Selection	v																				
	4	lune	Exp. Field	Selection	v	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND										
	5	lune	Field crop 2	Selection	N	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND										
	6	lune	Field crop	Spraving	N	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND										
	7	lune	Field crop	Spraving	N	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND										
	8	June	Exp. Field	Selection	Y	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND										
	9	July	Exp. Field	Selection	Y	ND	ND	nd	ND	ND	ND	ND	ND	ND	ND										
	10	July	Exp. Field	Selection	Y	ND	ND	30	ND	ND	ND	ND	ND	ND	ND										
	11	July	Exp. Field	Selection	Y	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND										
	12	July	Exp. Field	Selection	Y	34	ND	ND	ND	ND	ND	ND	ND	ND	ND										
	13	July	Field crop	Flailing	Y	25	22	25	23	ND	ND	ND	ND	27	ND										
	14	July	Field crop	Flailing	Y	25	21	26	22	ND	ND	ND	ND	31	ND										
	15	July	Field crop	Flailing	Y	29	28	34	26	ND	ND	ND	ND	33	ND										
	16	July	Field crop	Flailing	Y	24	21	25	21	ND	ND	ND	ND	33	ND										
	17	July	Field crop	Flailing	Ν	33	28	30	25	ND	ND	ND	ND	32	ND										
	18	July	Field crop	Flailing	Ν	ND	ND	27	22	ND	ND	ND	ND	ND	ND										
	19	July	Field crop	Flailing	Ν	ND	36	26	22	ND	ND	ND	ND	ND	ND										
	20	July	Field crop	Flailing	Ν	ND	34	29	25	ND	ND	ND	ND	ND	ND										
														26											
	21	August	Field crop	Chem./Flailing	N	28	23	27	20	ND	ND	ND	ND		ND										
	22	August	Field crop	Chem./Flailing	N	28	26	22	23	33	ND	ND	ND	27	ND										
		. .	e: 11			27	26	24	22	22				28											
	23	August	Field crop	Chem./Fiailing	N	27	26	24	23	33	ND	ND	ND												
	24	August	Field crop	Chem./Flailing	N	29	27	23	24	ND	ND	ND	ND	27	ND										
WAGE	NIN	GEN													WAGENINGEN										

UNIVERSITY & RESEARCH

All generic Erwinia TaqMan results were positive

Insects can transmit Erwinia's

- Pectobacterium be transmitted by various species of flies
- Pectobacterium is found in densities up to 2 million bacterial cells per fly
- Pectobacterium can survive up to 72 h on flies
- Infected insects are found from May till September, but not in October
- Flies can be contaminated with *Pectobacterium* present in potato dump piles and carry them up to 200 m after which they can infect (damaged) plants
- *P. brasiliense* is detected on insects on sticky yellow traps (NAK, Vreeburg, pers. comm.)

SRP on insects in Norway

Total: 2000 insects

Delia floralis = turnip root fly = bloemvlieg

Plutella xylostella = diamondback moth = koolmot

D. solani: +-P. parmentieri: +-P. atrosepticum: ++ Chrysoperla carnea = lacewings = gaasvlieg

Rossmann et al. (2018)

In NL, insects can be present in high numbers

30 cm

60 cm

90 cm

120 cm

150 cm

Data Tjalling Douma, Agrico, 19 June 2021, NL, collection of one week

Survey minituber crops

- 5 growers in the Netherlands
- cv. Agria
- 2019 (100 plants/grower) and 2020 (200 plants per grower)
- Haulms (top), stems (basis) and tubers (composite sample all tubers) of individual plants were analysed with enrichment TaqMan assays

Infections minituber crop (before haulm destruction)

20

Discussion results 2020

- For Pbr and Ppar (growers D and E),
 - Haulm infections did not coincide with infected tubers:
 - Infections came from air-borne inoculum
 - Tuber infections did not coincide with haulm infections:
 - infections came from soil or from inoculum leaking downward → populations grown in (ageing) leaves are responsible?
- For Dickeya sp. (grower C)
 - Not D. solani or D. dianthicola

Colonization

Leaf infections: colonization pathway

Risks of haulm infections

Kastelein et al., 2020

²⁴

Population dynamics in destructed haulms

From destructed haulms to soil and tubers

Spread

During cultivation: spread in the field by a release from rotten tubers

Boomsma et al., ...

Survival of *P. carotovorum* on tubers contaminated at grading during storage at 4 °C

Long term survival of Dickeya in tuber decay on tubers

Factors determining expression of potato blackleg

- Potato cultivar
- Pathogen density
- Pathogen variant

- Environmental conditions (temperature, humidity)
- Suppressiveness seed tubers??

(Ability to prevent disease expression)

Suppressivess seed lot: set up experiment

- Seed lots of two cultivars (ca. 20 per cultivar per year) collected from different locations and growers in the NL
 - Tested for a low level of SRP's
 - Analysed for dry weight content and minerals
 - Inoculated with 10⁶ cfu/ml of *D. solani* or not inoculated
 - 100 tuber per treatment were planted in a (randomized block design) in a sandy soil in the North of the NL

Increasing suppressiveness: a new management tool?

Kondor

Management

Management tools

- Selection of pathogen-free seed lots → Testing!
- Hygiene
- Cultivation measures?
- Resistance?
- Use of suppressiveness seed lots?
- Physical treatments of tubers?
- Biological control?

Cultivation measures

- Avoid water logging of soil \rightarrow drainage
- Avoid damage of your crop \rightarrow air-borne inoculum
- No surface water for irrigation \rightarrow can be contaminated
- Selection and roguing: only useful early in season?!
- Plant a high grade seed lot at a distance of at least 100 meter from a low grade seed lot → splash dispersal, spread by soil water
- Flailing should be done preferably during dry weather conditions, sunshine and little wind
- Full field spraying followed by flailing (after 5 days) is preferred above flailing followed by spraying
- Avoid the presence of haulm debris/volunteers on soil above tubers WAGENINGEN UNIVERSITY & RESEARCH

Cultivation measures

- Harvest manually as long as possible
- Harvest under dry conditions
- Postpone harvest of tubers till rotten mother tubers are gone (beware of rainy season!)
- Remove rotten tubers from harvesters and graders
- Avoid wounding of tubers
- After harvest: Dry, dry, dry
- Store tubers in well-ventilated rooms at low temperatures

Potential management tools

- Selection of pathogen-free seed lots → Testing
- Hygiene
- Cultivation measures?
- Resistance?
- Use of suppressiveness seed lots?
- Physical treatments of tubers?
- Biological control?

Physical treatments

- Thermotherapy
 - Warm water
 - Steam
 - Hot air
- Cold plasm'
- UV-light

viewed at wileyonlinelibrary.com]

(Siddique et al, 2018)

Steam treatment

5 s steam (1.2a)

Steam treatment

	Pecto-	H. solani	R. solani	C. coccodes	Fusarium	S. scabies	S. subterranae	
	bacterium				spp.			
Pootgoed								
Controle	47	46	40	52	35	42	41	
Stoom	2	3	2	3	2	2	2	
Naoogst								
Controle	26	32	31	44	20	27	26	
Stoom	3	4	5	8	4	5	5	

- Nozzle 20 cm above conveyer belt
- 10 s, 70 oC
- Air drying
- Progeny tested 120 days after planting

Afek & Orenstein, 2001

Steam treatment

Effect colonies on plates

Field: effect on Dsol infected tubers

Results not reproducible!

Potential management tools

- Selection of pathogen-free seed lots → Testing
- Hygiene
- Cultivation measures?
- Resistance?
- Use of suppressiveness seed lots?
- Physical treatments of tubers?
- Biological control?

BCA treatments: results 2019

Experiments 2020, 2021: results not reproducible!

Biological control Impression 26 June 2019

Pcb

Pcb +BCA MC 69

Water

Not reproducible

For further reading

Frédérique Van Gijsegem Jan M. van der Wolf Ian K. Toth *Editors*

Plant Diseases Caused by Dickeya and Pectobacterium Species

🖄 Springer

2021

Acknowledgement

- Viola Kurm
- Jan van der Wolf
- Anne van Diepeningen
- Odette Mendes
- Marjon Krijger
- Patricia van der Zouwen
- Theo van der Lee
- Marga van Gent

- Eef Jonkheer
- Pieter Kastelein
- Doretta Boomsma (HZPC)
- Henk Velvis (HZPC)
- Eisse de Haan (NAK)
- Mirjam Kooman (NAK)
- Inge van Duivenbode (NAK)
- Jack Gros (Agrico)
- Jan Gottschall (NAO)

Ministerie van Economische Zaken

Coöperatieve Zaaizaad- en Pootgoedtelersvereniging Anna Paulowna B.A.

Ray Spence, Guardian, July 2020