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A B S T R A C T   

The potential risk-based improvement of the Salmonella Dublin surveillance programme in Danish dairy herds 
was investigated, considering herd status misclassifications due to testing errors. The programme started in 
October 2002. Currently (early 2021) all dairy herds are classified based on quarterly bulk tank milk (BTM) 
testing with an indirect antibody ELISA (iELISA). Over the last two decades, the prevalence of herds classified as 
“likely infected” (levels 2,3) reduced remarkably. However, since 2015, the apparent prevalence has increased 
again, calling for improved surveillance and control to protect animal and human health. A deterministic 
simulation model based on data (2018–2019) from 2283 dairy herds in level 1 (“most likely free from infection”), 
was developed to estimate status misclassifications as false negative (FN) and false positive (FP) herds, under two 
testing strategies. These were: (A) the current system based on quarterly BTM testing only, and (B) an alternative 
strategy based on additional blood testing of up to eight calves, within herds at high risk of infection (HR). Both 
strategies were evaluated using three risk classification methods (I to III) and four sensitivity analysis scenarios 
(SA1-4), where different temporal performances were simulated for the iELISA in BTM. To apply strategy B, the 
best high-risk classification method (II), which combined managerial applicability and minimized errors, would 
require testing approximately 1000 calves across 127 HR herds. In that case, strategy A would cause 3 FNs and 67 
FPs, by assuming annual BTM sensitivity (BTMSe) 95% conditional on a 1-year disease history and specificity 
(BTMSp) 97%. Whereas strategy B could cause a similar number of FNs, but 7 FPs more, assuming a sensitivity 
(Se) of 77% and specificity (Sp) of 99% in individual blood-samples (SA1). Assuming also quarterly BTMSe 53% 
and BTMSp 99.9% (SA4), strategy A derived 28 FNs and 2 FPs, while strategy B resulted in 6 FNs less and 8 FPs 
more. Therefore, strategy B could improve early detection of infected HR herds, while strategy A would avoid 
more unnecessary restrictions in false-positive herds. This improves knowledge on the potential use of additional 
blood testing in HR herds and illustrates how deterministic modelling can be used to improve disease surveil-
lance and control.   

1. Introduction 

The bacterium Salmonella enterica subsp. enterica serovar Dublin (S. 
Dublin1) is a zoonotic pathogen infecting mostly cattle and leading to 
mortality and production losses (Richardson and Watson, 1971; Nielsen 
et al., 2012). Transmission to humans occurs through consumption of 

non-pasteurised dairy products, insufficiently cooked meat or occupa-
tional exposure to infected animals (Fierer, 1983; Helms et al., 2003; 
Harvey et al., 2017). 

In Denmark, a surveillance programme of S. Dublin was initiated in 
2002 covering all cattle herds (Anonymous, 2004; Nielsen et al., 2004; 
Nielsen, 2013a). Currently (early 2021), all dairy herds are tested 
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quarterly in bulk tank milk (BTM), with an indirect antibody-detecting 
Enzyme-Linked Immunosorbent Assay (iELISA). This test provides re-
sults as an ODC%-value, which is a background corrected proportion of 
the test sample optical density (OD) to a known positive reference 
sample (Hoorfar et al., 1993; Hoorfar et al., 1995; Nielsen et al., 2004; 
Warnick et al, 2006). 

During the last decades, the eradication programme has led to a 
reduced prevalence of dairy herds classified as “likely infected” (level 2 
or 3), and thus, classifying more than 90% of the herds as “most likely 
free” from infection (level 1) (Warnick et al., 2006; SEGES, 2021). 
However, since 2015, an increase in prevalence has been observed 
(SEGES, 2021). At the time of writing, the highest apparent prevalence 
was reported in the region of Jylland – Syd (17.4%) and the average 
inter-regional prevalence (across 10 regions) was around 6.4% (SEGES, 
2021). 

During eradication programmes, re-increases of prevalence of 
infected dairy herds could be related to lowered temporal sensitivity 
(Thurmond, 2003) in BTM testing, for example when herd size increases 
(Foddai et al., 2014; Foddai et al., 2016). The size of Danish dairy herds 
is known to increase at high speed (Foddai et al., 2015; Danish Agri-
culture & Food Council, 2020). Larger sizes can cause a delay in the 
detection of antibodies, due to their high dilution in large milk tanks. 
Therefore, S. Dublin infected herds could be wrongly classified as “likely 
free from disease” (level 1), before a sufficiently high within-herd 
seroprevalence is reached in the lactating cows and the BTM turns 
positive at the iELISA. Until that point, these would be “false negative” 
(FN) herds. The time elapsing between disease introduction into a herd 
and its detection can be defined as an high-risk period (HRP) (Horst 
et al., 1997), because during that time window, the pathogen may be 
spread to other farms, while the farmer is unaware that animals are 
infected. To shorten the HRP and to allow for early detection of newly 
infected herds, temporal herd-level sensitivity (HSe) needs to be 

increased, e.g. by using more sensitive test(s) and/or by supplementary 
testing. A high HSe may generate a high negative predictive value (NPV) 
in testing negative herds, if the probability of infection remains low. 

Improvement of the Danish eradication programme may also be 
achieved by applying risk-based surveillance (Stärk et al., 2006). In that 
case, cost-efficiency could be optimized by prioritising resources to-
wards population strata at higher risk of: exposure, infection, detection, 
and/or transmission, while minimising consequences (Stärk et al., 2006; 
Cameron, 2012; Cameron et al., 2014; Hansen et al., 2018; Alban et al., 
2020), such as disease spreading from FN herds to others, during the 
HRP. 

The purpose of this study was to investigate alternative test- 
strategies for the Danish S. Dublin surveillance programme in dairy 
cattle herds, to underpin efforts aimed to reduce the prevalence of this 
infection in the Danish cattle population. This was accomplished by 
comparing alternative testing approaches to the current surveillance 
approach and assessing how the HSe and NPV could be improved, 
without reducing herd specificity (HSp) and positive predictive values 
(PPV) much. Thus, the potential numbers of FN and false positive (FP) 
herds were compared under alternative combinations of testing strate-
gies and herds risk classification methods (I to III). This implied addi-
tional testing efforts towards specific population strata to make the 
programme risk-based. Annual and quarterly HRPs were considered to 
reflect changes of temporal sensitivity (BTMSe) and specificity (BTMSp) 
of the iELISA when used on BTM samples. 

2. Materials and methods 

A diagram resuming the main steps followed in this study, is shown 
in Fig. 1. Two alternative testing strategies were investigated: 

A) Current strategy based on quarterly BTM antibody testing of all 
level 1 dairy herds 

Fig. 1. Diagram representing the study layout.  
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B) Additional blood testing of up to eight calves within herds at high 
risk of infection (HR); while herds at low risk (LR) would continue to test 
only BTM. 

In both strategies, the annual temporal BTMSe and BTMSp were 
simulated with values that reflected the performance of the iELISA after 
four consecutive quarters of a year (i.e. four BTM tests) as the HRP 
(Warnick et al., 2006). When strategy B was investigated for the same 
HRP, it was assumed that blood testing of calves was added in the 4th 
testing round. When both strategies were evaluated for single quarterly 
HRPs, the temporal BTMSe and BTMSp were simulated with values that 
reflected the performance of the iELISA considering a single BTM test 
and recent disease introduction. 

2.1. Logistic regression modelling to estimate the expected probability of 
herd infection 

National surveillance data from all dairy herds, which had BTM 
tested for S. Dublin antibodies in each of the four half years of 2018 and 
2019, were extracted from the Danish Cattle Database (SEGES). The 
probability of infection (ProbInf) was calculated for each herd, based on 
estimates of the risk of becoming infected from a logistic regression 
model. 

The logistic regression model was used to analyse a total of 2422 
herds, after removing herds with annual average number of animals 
equal to zero and herds, which had been in level 2 in 2017. The latter 
were disregarded, because they were expected having a higher risk of re- 
becoming positive in 2018-2019 (Nielsen and Dohoo, 2012). Further-
more, the herds used for the logistic regression were in level 1 on 
01/01/2018 and were divided into two groups: herds that stayed in level 
1 and herds that switched to level 2 anytime during 2018-2019 
(Table 1). 

The status of each herd was assigned according to the rules of the 
surveillance and classification programme (Danish order No. 1326 of 
29/11/2017; Anonymous, 2019). A herd was classified in level 1, if the 
average of four consecutive BTM tests was ≤ 25 ODC% and if in the 4th 
sample the increase from the average of the three previous BTM values 
was ≤ 20 ODC%. Three risk factors were considered for logistic 
regression:  

1 Herd size: average number of cows present in the herd during the 
period 01/12/2018 to 30/11/2019.  

2 Proximity: the number of neighbouring properties within a 5 km 
radius that were in official level 2 at any point in time during 2018- 
2019, and  

3 Trade: the number of herds from which cattle were purchased during 
the two years. 

Firstly, for each risk factor, a univariate analysis was carried out and 
the significance in predicting the S. Dublin leveĺs change was evaluated 
for each herd. Secondly, five multivariable models were built to explore 
eventual associations and interactions between the three variables. 
Those were: model A = Size + Proximity; B = Size + Proximity + Trade; 
C = Size * Proximity + Trade (i.e. considering interaction between size 
and proximity); D = Size * Proximity * Trade (i.e. the full model 
considering interaction between all three factors), and E = Size * 

Proximity (i.e. without trade, but allowing an interaction between the 
two remaining factors). 

All interactions and Trade were non-significant, probably because 
purchase from level 2 and level 3 herds was prohibited during the study 
period (Danish order No. 1326 of 29/11/2017; Anonymous, 2019). 
Therefore, model A was finally used as: 

ln
(

p (x)
1 − p (x)

)

= ß0 + ß1x1 + ß2x2 (1) 

Where p(x) was the probability that “y” (the binary variable: herd 
infected = 1 or not = 0) was equal to 1, i.e. p(x) is the infection prob-
ability, also called ProbInf in sections below. The ß0 was the intercept, 
while x1 and x2 were the variables Size and Proximity with their 
respective regression coefficients ß1 and ß2. Thereafter, for each herd, 
the translation of ORs into ProbInf values was made by ProbInf = Odds / 
(1 + Odds), where Odds = exp (ß0 + ß1×1 + ß2×2), since Odds = p (x) / 
(1 - p (x)) (Hosmer and Lemeshow, 1989). 

2.1.1. Overview of the deterministic simulation model used to evaluate the 
testing strategies 

To develop the deterministic simulation model, 2283 level 1 dairy 
herds were used (Tables 2 and 3), because they satisfied the following 
conditions during 2018-2019: (i) were BTM tested in all the four half 
years, (ii) had an annual average number of cows above zero, (iii) were 
always in level 1 and (iv) had at least one animal at 01/01/2019. Thus, 
the aim of this model was to compare the ability to detect infection using 
two testing strategies A and B in herds classified as likely S. Dublin free. 
The data variables used for each herd were:  

• Herd́s identification number (CHR).  
• Proximity. 

Table 1 
Number of Danish dairy herds in S. Dublin level 1 or 2 on 01/01/2018, which 
were considered for the logistic regression analysis carried out to estimate the 
herd́s probability of infection (ProbInf).  

Data from all of 2018 - 2019 Level 1 on 01/01/2018  

Number of herds Percentage 
Constantly in level 1 2,286 94.4% 
In level 2 at some point during the study period 136 5.6% 
Total 2,422 100%  

Table 2 
Information on level 1 Danish dairy herds within the S. Dublin programme, 
according to different classifications of high risk and low risk herds.   

Classification 
I-II  

Classification 
III  

Parameter HR herds LR herds HR herds LR herds 

Number of 
herds 

127 2,156 346 1,937 

Proportion of 
herds (PrP) 

5.6% 94.4% 15.2% 84.8%  

Number of 
calves to test 
(n) 

966 n.a. 2648 n.a. 

Effective 
probability 
of infection 
(EPI) 

21.6% 1.5% 9.6% 1.3%  

Relative risk 
of infection 
(RR) 

14.8 1 7.2 1  

Truly 
infected (TI) 
herds 

27 32 33 26  

Truly free 
(TF) from 
infection 
herds 

100 2,124 313 1,911 

Herds classification method I = High risk (HR) herds and low risk (LR) herds 
divided using as cut-off the 95th percentile probability of infection (ProbInf). 
Classification II = HR herds had ≥ 8 neighbours in level 2 and ≥ 200 average 
cows per year. Classification III = HR herds had ≥ 200 annual average cows and 
were located in high prevalence regions (Himmerland, Jylland – Syd and Jylland 
– Sydvest). Classifications I and II led the same results, and thus, are presented 
together. n.a = not applicable. 
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• ProbInf.  
• Region of herd location.  
• Herd size in annual average number of cows.  
• Overall herd size from number of animals per age group at 01/01/ 

2019 (young calves = 0–3 months old, old calves = 3–6 months, 
heifers-steers = 6–24 months, and adult cows > 2 years). 

Throughout the paper, the terms “simulation” and “estimation” are 
used interchangeably, because although the inputs described above 
were obtained from data, others were simulated such as: the proportion 
of actually infected (undetected) level 1 herds, the within-herd disease 
epidemiology, and the temporal test performance. The simulation model 
was developed in R (R Core Team, 2013). 

2.1.2. Classification of herds into high-risk and low-risk population groups 
The deterministic simulation model reflected the differential risk of 

herd infection across 2283 level 1 dairy herds. Three alternative risk- 
based classification methods were investigated (Tables 2 and 3). 

In classification I, the 95th percentile ProbInf (21.6%) was used as 
cut-off to split herds between the HR and LR strata. This was a statistical 
classification method. 

In classifications II and III, cut-offs were defined using practical pa-
rameters, which would facilitate implementation in the surveillance 
programme. 

In classification II, the HR herds had at least eight neighbours in level 
2 and at least 200 cows in (annual) average. Those cut-offs corresponded 
to the minimum values observed in classification I. Nevertheless, the 
two classifications led to the same classification of herds across the two 
risk strata (Table 3). 

In classification III, the HR herds had at least 200 cows in (annual) 
average and were located in the high prevalence regions (‘Himmerland’, 
‘Jylland-Syd’ and ‘Jylland-Sydvest’) (Table 3). 

2.1.3. Simulating between-herds infection: “truly infected” and “truly free” 
herds 

The overall expected number of “truly” infected (TI), but classified as 
level 1 dairy herds, was simulated by multiplying the national median 
ProbInf (2.6%) times the 2283 herds. Accordingly, 59 TI and 2,224 
(97.4%) “truly free” (TF) herds, were assumed in the country. 

Thereafter, in each classification, the 59 TI herds were allocated to 
the HR and LR strata (Table 2) according to the proportion of herds 
(PrPs) and the herd́s individual relative risk (RRs) of infection within 
each stratum. Both parameters were used to calculate the related (within 
stratum) effective probability of infection (Martin et al., 2007a; 2007b), 
namely EPIHR and EPILR (see Appendix A). These were multiplied for the 
number of HR and LR herds, to simulate the “TI” herds per stratum 
(Table 2). 

Thus, Table 2 shows for each classification (I to III) and stratum (HR 
or LR): the number and PrPs of herds, the number of calves (n) to test 
under strategy B (in HR herds), the median EPI, the RR, and the number 
of simulated TI and TF herds. 

Table 3 shows the number of herds per Danish region, the number of 
level 2 neighbours per herd (proximity), and the herd size in number of 
cows or in total cattle. 

2.1.4. Simulating within-herd infection 
Data on test results from infected herds is registered in the national 

Danish Cattle Database and was used to explore variability in within- 
herd infection epidemiology. It showed that approximately 16% of the 
level 2 herds had antibodies in cows only. In another 6% only calves 3–6 
months old were antibody-positive, while the remaining 78% of herds 
had seropositive cattle in multiple age groups (unpublished data). 

To account for this, the list with all 2283 level 1 dairy herds was 
randomized in Excel. In the top 366 (16%) herds, the infection was 
simulated only in adult cows and the total number of infected animals 
within that group was simulated as d = WGP * group size (rounded up to 
the closest integer, i.e. d ≥ 1). The WGP represented the within-group 
design seroprevalence at the day of testing (Martin et al., 2007a; 
2007b). Similarly, in the 137 (6%) herds appearing from line 367 and 
downwards of the randomized list, the infection was simulated in the 
group of 3–6 months old calves only, and d was calculated as above. In 
the remaining 1783 (78%) herds, the overall within-herd design prev-
alence (WHP) was split between the different age groups (see Appendix 
B), following the same principles (Martin et al., 2007a; 2007b) applied 
in the previous section to simulate between-herds infection. 

It must be noted that WGP and WHP, represented cut-offs (design 
prevalence) at which detection of the seropositive animal/s was ex-
pected to occur with the simulated (group or herd level) sensitivity at 
the day of testing (Martin et al., 2007a; 2007b). Both values were set at 
10%. Nevertheless, only the number of infected 3–6 months old calves 
(d) was used to calculate the sensitivity gained from individual blood 
testing in strategy B (see next Section), because the aim was to evaluate 
how additional (risk-based) blood testing could increase overall tem-
poral HSe, in HR herds where S. Dublin could be missed from testing the 
milking group. 

2.1.5. Herd sensitivity and specificity 
The overall HSe, HSp, NPV and PPV were estimated for each herd 

under each testing strategy. In strategy A, the HSe and HSp were similar 
to the BTMSe and BTMSp of the BTM iELISA, whereas for strategy B, 
both values were calculated. In both strategies, the BTMSe was assumed 
equal to 0%, for the 6% herds where infection was simulated only in 
calves older than three months. For the 16% herds simulated with only 
antibody positive cows, the group sensitivity (GSeOlderCalves) from 
testing of individual calves was set at 0%. Whereas, in herds with 
simulated infected calves, the GSeOlderCalves was estimated using a 
hypergeometric approximation (MacDiarmid, 1988). 

GSeOlderCalves = 1 − (1 − n/N ∗ Se)∧d (2) 

Table 3 
Number of S. Dublin level 1 dairy herds in each Danish region according to risk 
classification and stratum, with respective median number of neighbours in level 
2 (proximity) and size in median number of cows or in total cattle. Within 
brackets are the 5th and 95th percentiles of each distribution.   

Classification I 
and II  

Classification 
III  

Parameter HR herds LR 
herds 

HR herds LR 
herds 

Neighbours in 
level 2 

11 (8; 20) 2 (0; 11) 5 (1; 16) 2 (0; 12) 

Size in number 
of cows 

299 (207; 621) 148 (40; 
435) 

299 (206; 613) 139 (37; 
403) 

Size in total 
cattle 

530 (333; 1169) 289 (84; 
800) 

538 (314; 1104) 273 (79; 
729) 

Region HR LR HR LR 
Bornholm 0 26 0 26 
Fyn 0 145 0 145 
Himmerland 36 181 96 121 
Jylland – Midt 7 243 0 250 
Jylland - 

Midtvest 
5 351 0 356 

Jylland – Nord 3 312 0 315 
Jylland – Øst 0 194 0 194 
Jylland – Syd 49 438 182 305 
Jylland – 

Sydvest 
27 144 68 103 

Sjælland 0 122 0 122 

Herds classification method I = High risk (HR) herds and low risk (LR) herds HR 
herds divided using as cut-off the 95th percentile probability of infection (Pro-
bInf). Classification II = HR herds had ≥ 8 neighbours in level 2 and ≥ 200 
average cows per year. Classification III = HR herds had ≥ 200 annual average 
cows and were located in high prevalence regions (Himmerland, Jylland – Syd 
and Jylland – Sydvest). Classifications I and II led the same results, and thus, are 
presented together. 
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Where n = number of randomly tested calves (up to eight per herd) 
and N = number of calves present in the group. The Se was the sensi-
tivity of the iELISA when used in individual blood (see Section 2.1.8), 
while d was the number of infected animals present within the group, as 
explained above. Thus, GSeOlderCalves represented the probability of 
detecting at least one antibody positive calf, if at least one was “truly” 
seropositive within the group. Moreover, from a managerial point of 
view, Eq. (2) assumed specificity = 100%. Hence, it was assumed that in 
the alternative surveillance programme (B), even one positive blood 
sample would classify the herd into level 2. 

The group specificity obtained from individual blood testing, was 
estimated as GSpOlderCalves = Sp n. Where Sp was the individual 
diagnostic specificity (Section 2.1.8). The overall (parallel) HSe and HSp 
of testing strategy B (in HR herds), were then calculated assuming in-
dependence between groups and using Eqs. (3) and (4), respectively: 

HSeParallel= 1 − (1 − GSeOlderCalves) ∗ (1 − BTMSe) (3)  

HSpParallel = GSpOlderCalves ∗ BTMSp (4)  

2.1.6. Negative and positive predictive values 
The NPV and the PPV were estimated for both testing strategies 

within each risk strata, by using Eqs. (5) and (6) (Noordhuizen et al., 
2001): 

NPV =
[HSp ∗ (1 − EPIH)]

[HSp ∗ (1 − EPIH) + (1 − HSe) ∗ EPIH]
(5)  

PPV =
(HSe ∗ EPIH)

[(HSe ∗ EPIH) + (1 − EPIH) ∗ (1 − HSp)]
(6) 

Where, the EPIH represented the median effective probability of herd 
infection within the risk stratum (EPIHR or EPILR), as explained in Sec-
tion 2.1.3 and in the Appendix (A). It must be noted that, similar pre-
dictive values would have been obtained, if the within-stratum median 
ProbInf was instead used in Eqs. (5) and (6). The EPIHR or EPILR were 
preferred as inputs, because they were more consistent with the number 
of TI and TF herds allocated by the model within each risk stratum 
(Table 2) from a national median ProbInf = 2.6%. 

For testing strategy B, when Eqs. (5) and (6) were applied to HR 
herds, the HSe was set equal to the HSeParallel obtained from Eq. (3), 
while the HSp was set equal to the HSpParallel estimated in Eq. (4). 

2.1.7. Number of false negative and false positive herds 
The number of FN and FP herds were simulated in total and for each 

risk stratum (HR and LR). The overall median HSe simulated in Section 
2.1.5 represented the probability that a TI herd is correctly classified as 
positive by the testing strategy, while the median HSp represented the 
probability that a TF herd is correctly classified as negative. The number 
of FN and FP herds were estimated as: 

FN=TI ∗ (1 − HSe) (7)  

FP=TF ∗ (1 − HSp) (8)  

Where (1- HSe) was the probability that a TI was “wrongly” classified as 
negative and (1- HSp) was the probability that a TF was wrongly clas-
sified as positive, by the testing strategy used. 

2.1.8. Simulating test performance as originally validated 
In classifications I to III, the annual BTMSe and BTMSp were set at 

95% and 97%, according to Warnick et al. (2006); who estimated those 
mean values when herds sizes were smaller than in the current situation 
and when the national herd prevalence was around 8%. The estimates 
represented the HSe and HSp after four consecutive quarterly BTM re-
sults (i.e. annual HRP), similarly to today’s testing strategy (A). 

For the blood testing of calves, the individual diagnostic Se was set at 
85% or 77%, for cut-offs 25 ODC% or 50 ODC%, respectively. Whereas 

the related Sp was 88 or 95% (Nielsen et al., 2004). 

2.2. Sensitivity analysis on iELISA’s performance 

A sensitivity analysis was carried out with four additional scenarios 
(SA1, SA2, SA3 and SA4), to investigate the impact of uncertainty on the 
current performance of the iELISA. 

The risk-based classification II was used for all SA scenarios because: 
it combined the practicality of an eventual implementation and led the 
same HR and LR herds identified in the statistical classification I 
(Table 2). Classification III was disregarded for the sensitivity analysis, 
due to the very high number of HR herds and calves to test in blood 
(Table 2). 

Moreover, for all SA scenarios, the individual blood Se and Sp were 
set at 77% and 99% respectively, for cut-off 50 ODC% (Nielsen and 
Ersbøl, 2004). The cut-off 25 ODC% was disregarded, because we knew 
it would have caused too many false positive herds (see results). 

Scenario SA1 differed from the original scenario simulated under 
classification II, only because the Sp was increased from 95% (Nielsen 
et al., 2004) to 99% (Nielsen and Ersbøl, 2004). 

Scenario SA2 differed from SA1, because the annual median BTMSe 
was reduced from 95 to 92%, while the BTMSp was increased from 97 to 
98%. The BTMSe and BTMSp inputs used in SA2 were the minimum and 
maximum values estimated by Warnick et al. (2006). Thus, SA2 assumed 
that the current annual BTMSe could be lower and BTMSp higher than 
when the test was validated, due to current bigger herd sizes and higher 
antibodies dilutions in BTM. 

In SA3, the BTMSe was set at 88% while the related BTMSp was 
increased to 99%, assuming that if the BTMSe reduced, the BTMSp 
improved in some way (i.e. if a TI herd was less likely to result positive, 
then also a TF herd was less likely to result false positive). Warnick et al. 
(2006) stated that “the probability of testing positive on the initial test 
was 88% or higher for all patterns, where the herd was infected in the 
current quarter”. Accordingly, the iELISA performance assumed in SA3 
represented the quarterly BTMSe as originally validated. 

In SA4, the BTMSe was further reduced to 53% while the BTMSp was 
further increased to 99.9% (based on our opinion), to reflect the current 
impact of antibodies dilutions after quarterly HRPs. 

3. Results 

3.1. Testing strategy A: annual herd sensitivity, specificity and predictive 
values 

For testing strategy A, the annual median HSe and HSp were 95 and 
97% (Table 4a) in all herds classifications (I to III) and in both strata (HR 
or LR), similar to the values used as inputs for BTMSe and BTMSp 
(Warnick et al., 2006). Nevertheless, some of the related PPV differed 
across scenarios and strata, because the EPIHR and EPILR differed too 
(Table 2). 

In the HR herds, the annual median NPV was always around 99% 
(approximated), while the PPV ranged from 77% in classification III to 
90% in classifications I-II. 

In LR herds, with all three classifications, the NPV was 99% while the 
PPV was 30–32% (Table 4a). 

3.2. Testing strategy B: annual herd sensitivity, specificity and predictive 
values 

For testing strategy B, using the cut-off 25 ODC% for blood testing in 
HR herds, the annual median HSeParallel was around 98% in all three 
classifications (I to III), while the HSpParallel was 35%. The related 
median NPV was 98% (I-II) or 99% (III), while the PPV ranged from 14% 
(III) to 29% (I-II) (Table 4a). 

In the same HR stratum, but using cut-off 50 ODC% for blood testing, 
the annual median HSeParallel was always around 97%, while the 
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HSpParallel was 64%. The median NPV was 99%, while the median PPV 
ranged from 22% (III) to 43% (I-II) (Table 4a). 

In LR herds, blood testing was not simulated. Thus, the annual 
sensitivity, specificity and predictive values did not change compared to 
the estimates obtained for testing strategy A (Table 4a). 

3.3. False negative and false positive herds considering original annual 
test performance 

For strategy A, by assuming annual BTMSe 95% and BTMSp 97% 
(Warnick et al., 2006), a total of 3 FN (in all risk classifications), and 66 
(III) or 67 (I-II) FP herds were simulated (Table 5). 

For strategy B, 2 (III) or 3 (I-II) FN herds were obtained. In classifi-
cations I-II, 100 or 129 FP herds were simulated if cut-off 50 or 25 ODC% 
were used for blood testing. Whereas in classification III, the total 
number of FP herds was 169 or 261, respectively. For other differences 
between testing strategies and risk classifications, see Table 5. 

3.4. Output of sensitivity analysis under varying test performance 

HSe, HSp and predictive values estimated in the sensitivity analysis 
(SA scenarios) are shown in Table 4b. In this Section, focus is on the 
estimated number of FN and FP herds under varying test́s performances 
(Table 5). 

In scenario SA1, a total of 3 FN and 67 FP herds were estimated for 
strategy A, while strategy B led to 3 FN and 74 FP herds (Table 5). The 
main difference between SA1 and the original scenario under classifi-
cation II was that, with strategy B, 10 instead of 36 FP high risk herds 
were estimated in the former (Table 5), because the higher specificity 
used for individual blood testing (Sp = 99% instead of 95%) increased 
the HSpParallel from 64% (Table 4a, II) to 90% (Table 4b, SA1). 

Scenario SA2 resulted in 1 (B) or 2 (A) FNs more and 22 (B) or 23 (A) 
FPs less than SA1 (Table 5). Thus, by assuming current lower annual 
temporal BTMSe (92 vs 95%) and higher BTMSp (98 vs. 97%) a slightly 
higher number of FN herds, but a remarkably lower number of FP herds 
were obtained in SA2, for both strategies. 

In scenario SA3 (quarterly highest BTMSe = 88% and lowest BTMSp 

= 99%), a total of 7 FN and 22 FP herds were simulated for strategy A. 
Whereas testing strategy B resulted in 1 FNs less and 8 FPs more 
(Table 5). 

In scenario SA4 (quarterly lowest BTMSe = 53% and highest BTMSp 
= 99.9%), 28 FN and 2 FP herds were simulated for strategy A. Whereas 
testing strategy B resulted in 6 FN less and 8 FP herds more (Table 5). 

4. Discussion 

In this study, the number of surveillance units (animals and herds) to 
test, as well as the potential herd status classification errors (FN and FP), 
were assessed for different combinations of testing strategies, risk-based 
population classifications and test performances. Simulation outputs 
were reported in two different forms: (a) as individual (median) HSe, 
HSp and predictive values (Table 4.a and b) and (b) as national number 
of FN and FP herds (Table 5). From a managerial perspective, estimating 
the national number of FNs and FPs, can give clearer information than 
just focusing on percentage estimates of HSe, HSp and predictive values. 
For example, showing that the individual HSe increases e.g. from 95 to 
98% (Table 4.a first line) when changing from strategy A to strategy B is 
interesting, because it would mean that the percentage of detected TI 
high risk herds would increase of 3%. However, such a percentage alone 
is not enough to show improvement of the system at national level, in 
terms of absolute number of involved herds and related costs. For this 
purpose, the HSe and HSp evaluated at individual herd level had to be 
related to the number of TI and TF herds present in the country, to es-
timate FN and FP herds, because those two kinds of classification errors 
determine the actual improvement and sustainability of the of the sys-
tem in the long run. 

Our results could be used to inform eventual improvements of the S. 
Dublin eradication programme, especially to improve early detection. In 

Table 4a 
Simulated annual median herd sensitivity, specificity and predictive values, for 
Danish dairy herds classified in level 1 within the S. Dublin eradication pro-
gramme, for each combination of: testing strategy, risk classification procedure 
and risk stratum.  

Risk classification I and II HR-B-25 HR-B-50 HR-A LR-A 

HSe 98 % 97 % 95 % 95 % 
HSp 35 % 64 % 97 % 97 % 
NPV 98 % 99 % 99 % 99 % 
PPV 29 % 43 % 90 % 32 %  

Risk classification III 
HR-B-25 HR-B-50 HR-A LR-A 

HSe 98 % 97 % 95 % 95 % 
HSp 35 % 64 % 97 % 97 % 
NPV 99 % 99 % 99 % 99 % 
PPV 14 % 22 % 77 % 30 % 

HSe = Herd temporal sensitivity; HSp = Herd temporal specificity; NPV = Herd 
negative predictive value, PPV = Herd positive predictive value. Testing strategy 
A = All herds (HR = high risk; LR = low risk) tested on BTM only. Strategy B =
BTM testing in all herds plus blood testing in HR herds. Results presented using 
cut-off 25 or 50 ODC% (HR-B-25 or HR-B-50) for blood testing. Classification I 
= HR and LR herds divided using as cut-off the 95th percentile probability of 
infection (ProbInf). Classification II = HR herds had ≥ 8 neighbours in level 2 
and ≥ 200 average cows per year. Classification III = HR herds had ≥ 200 annual 
average cows and were located in high prevalence regions (Himmerland, Jylland 
– Syd and Jylland – Sydvest). Classifications I and II led the same results, and 
thus, are presented together. In all three classifications (I to III) the original 
annual BTMSe 95% and BTMSp 97% (Warnick et al., 2006), were used. Whereas 
the blood diagnostic sensitivity (Se) was set at 85% or 77% for cut-offs 25 ODC% 
or 50 ODC%, and the specificity (Sp) was 88% or 95% (Nielsen et al., 2004). 

Table 4b 
Simulated median herd sensitivity, specificity and predictive values, for Danish 
dairy herds classified in Level 1 within the S. Dublin eradication programme, for 
each sensitivity analysis scenario (SA1, SA2, SA3 and SA4).  

Scenario SA1 HR-B-50 HR-A LR-A 

HSe 97 % 95 % 95 % 
HSp 90 % 97 % 97 % 
NPV 99 % 99 % 99 % 
PPV 72 % 90 % 32 % 
Scenario SA2 HR-B-50 HR-A LR-A 
HSe 96 % 92 % 92 % 
HSp 90 % 98 % 98 % 
NPV 99 % 98 % 99 % 
PPV 73 % 93 % 41 % 
Scenario SA3 HR-B-50 HR-A LR-A 
HSe 94 % 88 % 88 % 
HSp 91 % 99 % 99 % 
NPV 98 % 97 % 99 % 
PPV 75 % 96 % 57 % 
Scenario SA4 HR-B-50 HR-A LR-A 
HSe 76 % 53 % 53 % 
HSp 92 % 99.9 % 99.9 % 
NPV 93 % 89 % 99 % 
PPV 73 % 99 % 89 % 

HSe = Herd temporal sensitivity; HSp = Herd temporal specificity; NPV = Herd 
negative predictive value, PPV = Herd positive predictive value. Testing strategy 
A = All herds (HR = high risk; LR = low risk) tested on BTM only. Testing 
strategy B = BTM testing in all herds plus blood testing in HR herds. All SA 
scenarios used the risk-based classification II and individual blood Se = 77% and 
Sp = 99% for cut-off 50 ODC% (Nielsen and Ersbøll, 2004) (i.e. only column 
HR-B-50 is reported compared to Table 4a). SA1 = BTMSe 95% and BTMSp 97% 
(Warnick et al., 2006) representing original annual BTM temporal performance. 
SA2 = BTMSe 92% and BTMSp 98% (Warnick et al., 2006) representing current 
annual BTM temporal performance. SA3 = BTMSe 88% (Warnick et al., 2006) 
and BTMSp 99% representing original quarterly BTM temporal performance. 
SA4 = BTMSe 53% and BTMSp 99.9% representing current quarterly BTM 
temporal performance (expert opinion). 

A. Foddai et al.                                                                                                                                                                                                                                  



Microbial Risk Analysis 19 (2021) 100184

7

the final phases of an eradication programme, when the prevalence is 
low, HSe, early detection of newly infected herds and low number of FNs 
are related to each other and are extremely important, to maintain or 
optimize the epidemiological status and to reach the final goal of the 
programme. However, early detection is also challenging, because rare 
infections become more difficult to find as prevalence reduces. Then, 
herds misclassified as negative (due to HSe < 100%) while in fact 
infected with S. Dublin (FN), could spread disease during the HRP, and 
can have important consequences for the eradication progress, for the 
income of farmers and for human health. This study showed how risk- 
based surveillance could increase the temporal HSe and the related 
NPV in large HR herds, and thus, could reduce the number of FNs. At the 
same time, it was evaluated how FPs could be affected, because cost- 
efficiency of the system can be hampered by under-testing as well as 
by over-testing and imposing unnecessary control actions on FP farms. 

4.1. Impact of risk classification on managerial applicability of risk-based 
surveillance 

By definition, the application of risk-based surveillance relies on an 
adequate characterisation of the different populationś risk strata. The 
estimates of the individual herds’ probabilities of infection and of the 
relative risk were based on actual national data and on risk factors 
quantified from the same population and time frame. In line with Martin 
et al. (2007a), (2007b), the RR inputs were combined with the respec-
tive PrPs of farms to which they applied (Table 2), to estimate the 
within-stratum effective probability of infection: namely EPILR and 
EPIHR (Appendix A). Thereafter, the total 59 TI herds simulated from the 
national median ProbInf were split across the two strata, in a stan-
dardized and objective manner, according to each EPI value (Table 2; 
Appendix A). Through the application of this method of surveillance 
evaluation, the importance of the applied risk-based classification can be 

clearly distinguished from the effects of the investigated sampling 
strategy and test (Martin et al., 2007a; 2007b; Foddai et al., 2020). 

Classification I divided the 2,283 level 1 herds across the two risk 
strata, by using as cut-off the 95th percentile ProbInf, which was esti-
mated for each herd by logistic regression. Whereas classification II was 
based on herd size and on number of infected neighbours, and classifi-
cation III was based on size and region of location. The risk factor 
analysis showed that these three variables were associated with the 
ProbInf, but were more directly available from the Danish Cattle Data-
base, and thus, are more practical than ProbInf to be used in the pro-
gramme. However, the number of herds and calves to test, and 
consequently the number of FP herds, appeared by far higher in classi-
fication III than in classifications I-II (Table 2), while the number of FN 
was similar (Table 5). Thus, the practicality-based classification III was 
not considered further. 

In classification II (applied also to all SA scenarios), the allocation of 
herds into the high and low risk strata completely matched that of 
classification I (Table 2). In those cases, the number of herds (127) and 
calves (966) to test in blood samples would be targeted towards very 
large HR herds. LR herds were approximately half the size of HR herds. 
Hence, in the latter, disease detection by BTM testing could require 
longer time, and several animals could be moved/sold during the HRP. 
Moreover, in classifications I and II, a similar number of TI herds was 
allocated between the two strata (27 as HR vs. 32 as LR), while the total 
number of LR herds was approximately 17 times larger than the number 
of HR herds (Table 2). The different PrP of herds allocated in each 
stratum, combined with the respective RR of infection, led very different 
within-stratum effective probabilities of infection (Table 2: EPIHR >

EPILR). Consequently the number of (simulated) TI herds related with 
each EPI value suggested that, if any of these two risk-based classifica-
tions (I-II) is implemented in the programme, blood testing could be 
targeted efficiently to (at least) half of the TI herds present in the country 
(see TIs in Table 2). 

Classification II appeared the best for combining: managerial appli-
cability, costs of blood testing and improved early detection of (several) 
TI large herds, while minimizing classification errors. 

4.2. Combined effects of test strategies and risk-based classifications on 
surveillance outputs 

The high annual NPV did not change remarkably across combina-
tions of testing strategies and risk classifications, because in Eq. 5 a high 
annual HSe (≥ 95%, Table 4a,b) was combined with a low effective 
probability of infection, EPIHR or EPILR (Table 2). This was the case 
especially within the LR stratum, where the EPILR was 1.3–1.5% and 
only BTM testing with high BTMSe (Warnick et al., 2006), were simu-
lated for both strategies (Table 4a,b). The NPV tends to increase if the 
probability of infection reduces and/or if herd sensitivity is maximized. 

As argued by Warnick et al. (2006), high NPV and relatively low PPV, 
like those estimated in this study (Tables 4a,b), would be consistent with 
the principal surveillance programme goal of reaching high confidence 
in a negative test result, to avoid secondary disease spread from FN 
farms. The PPV differed between strata, even within strategy A, where 
the same BTMSe and BTMSp were used for all herds. This happened 
because within the HR stratum, the median EPI was more variable across 
classifications (Table 2) and was higher than that of the LR stratum, 
yielding higher PPV for the HR herds than for the LR herds (according to 
Eq. 6). 

In HR herds, strategy B caused a small increase of the HSeParallel 
(97–98% vs BTMSe 95%), but a remarkable decrease in HSpParallel 
(35–64 vs BTMSp 97%) compared to strategy A (Table 4a). Accordingly, 
also the median PPV were lower for strategy B. If this testing strategy is 
applied, cut-off 50 ODC% could be preferred for individual blood 
testing, because it can cause less FP herds than using 25 ODC%, while 
the number of FNs would be similar with the two cut-offs (Table 5; 
classifications I to III). 

Table 5 
Number of false negative and false positive level 1 Danish dairy herds within the 
S. Dublin eradication programme according to combinations of: testing strategy, 
risk-based classification, risk stratum and simulation scenario.  

Scenario I and II HR-B-25 HR-B-50 HR-A LR-A 

FN 1 1 1 2 
FP 65 36 3 64 
Scenario III HR-B-25 HR-B-50 HR-A LR-A 
FN 1 1 2 1 
FP 204 112 9 57 
Scenario SA1 HR-B-25 HR-B-50 HR-A LR-A 
FN n.a 1 1 2 
FP n.a 10 3 64 
Scenario SA2 HR-B-25 HR-B-50 HR-A LR-A 
FN n.a 1 2 3 
FP n.a 10 2 42 
Scenario SA3 HR-B-25 HR-B-50 HR-A LR-A 
FN n.a 2 3 4 
FP n.a 9 1 21 
Scenario SA4 HR-B-25 HR-B-50 HR-A LR-A 
FN n.a 7 13 15 
FP n.a 8 0 2 

FN = Number of false negative herds; FP = Number of false positive herds. 
Testing strategy A = all herds (HR = high risk; LR = low risk) tested on BTM 
only. Testing strategy B = BTM testing in all herds plus blood testing in HR 
herds. Scenarios I to III are related to estimates presented in Table 4a. All SA 
scenarios are related to estimates reported in Table 4b, and thus, used the risk- 
based classification II and individual blood Se = 77% and Sp = 99% for cut-off 
50 ODC% (Nielsen and Ersbøll, 2004) (i.e. only column HR-B-50 is reported for 
SA scenarios). SA1 = BTMSe 95% and BTMSp 97% (Warnick et al., 2006) rep-
resenting original annual BTM temporal performance. SA2 = BTMSe 92% and 
BTMSp 98% (Warnick et al., 2006) representing current annual BTM temporal 
performance. SA3 = BTMSe 88% (Warnick et al., 2006) and BTMSp 99% rep-
resenting original quarterly BTM temporal performance. SA4 = BTMSe 53% and 
BTMSp 99.9% representing current quarterly BTM temporal performance 
(expert opinion). 
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The LR stratum contained the highest number of FP herds with both 
testing strategies (Table 5), because despite the high annual BTMSp 
(97%), this stratum represented the majority of level 1 TF herds 
(Table 2). Thus, although the probability of resulting FP (according to 
Eq. 8) was small (3%), it applied to most of the herds (Table 2). 

The deterministic model allowed understanding to what extent the 
herd status classification errors were influenced by: test performance, 
testing strategies and risk-based classification. 

4.3. Impact of time and test performance 

In all four sensitivity analysis scenarios (SA1, SA2, SA3 and SA4), the 
BTMSe was reduced, while the BTMSp was increased (Table 4b), 
compared to the inputs used in the basic classification scenarios I to III 
(Table 4a). Moreover, annual and quarterly HRPs were considered, 
because within infected herds, combinations of: time from disease 
introduction, herd size and management; can affect within-herd daily 
disease transition-states dynamics and related temporal herd sensitivity 
(Thurmond, 2003; Foddai et al., 2014; Foddai et al., 2016). From a 
general point of view, the antibody ELISA used for BTM testing is likely 
to be more sensitive after long than after short HRPs. Usually, the longer 
the time elapsed from day of disease introduction, the higher the sero-
prevalence reached within the milking group (Foddai et al., 2014), 
which can cause increases of the antibody titres in BTM by the day of 
testing. At the same time, it must be kept in mind that the BTM sample 
represents (mainly) the epidemiological status of the lactating cows on 
the day of sampling, and between two or more samplings, the compo-
sition of the group can change remarkably. Especially in large herds, a 
high number of uninfected recently calved cows could be introduced to 
the milking parlour within a few days. At the same time, antibody 
positive cows could be moved to the dry-off group and no longer 
contribute milk to the BTM sample. Any of those within-herd move-
ments can cause sudden antibodies fluctuations in BTM, not least at the 
beginning of the herd́s infection period, when only a few animals have 
seroconverted. 

Scenarios SA1 and SA2 reflected test performance after annual HRPs 
and showed that, most herds infected for at least one year were very 
unlikely to be missed at the 4th BTM testing round, when temporal 
BTMSe = 92% or 95% were assumed (Table 4a, basic classification 
scenarios I to III; Table 4b, scenario SA1-2). Paradoxically, if high 
sensitivity is always assumed for BTM testing, then additional blood 
testing of calves (i.e. changing from strategy A to strategy B) appears 
disadvantageous; because apart from the additional costs of sampling 
and testing, the number FPs could increase remarkably (Table 5). 

In contrast, in scenarios SA3 and SA4, which only included a single 
BTM result, the change from strategy A to strategy B, led to an evident 
reduction in FN high risk herds and a more modest increase in FPs, 
compared to results of SA1 and SA2 (Table 5). Hence, if low BTMSe is 
assumed for quarterly testing (i.e. by three months from disease intro-
duction into the herd), additional blood testing could improve the 
chances of detecting large HR herds that have been recently infected, 
while the chances of TF herds resulting FP could be minimized. 

At the same time, it could be argued that if SA4 was assumed as the 
most realistic scenario (with the lowest quarterly BTMSe and the highest 
BTMSp), and if strategy B was implemented quarterly, a total of 28 FN 
high risk herds could be still obtained during a year; because 7 were 
estimated for a single quarter (Table 5, SA4). However, this might not be 
the case, because the higher number of FNs “avoided” after each single 
quarter, by applying strategy B instead of strategy A, should conse-
quently reduce the number of secondary cases in the following quarters, 
and thus, should decrease the total annual FNs as well. For these reasons, 
comparisons between testing strategies were made only under the same 
HRP (i.e. SA1 vs. SA2 and SA3 vs. SA4), while comparisons between 
testing strategies referring to different surveillance periods (e.g. SA2 vs. 
SA4) should be avoided or made with caution. 

4.4. Interpretation of outputs considering epidemiological context and 
tolerated high-risk periods 

For interpreting and using the outputs described above, the current 
epidemiological context (i.e. the actual herd prevalence), the popula-
tion/herd structure and the tolerated HRP for detecting infected herds 
with the assumed BTMSe, should be considered. In fact, those factors 
affect the interpretation of the BTM values, and thus, the related pros 
and cons of each testing strategy (A vs. B). For the Danish programme, 
the current main aims are: improving early detection of newly infected 
herds, stopping re-increase of prevalence (e.g. due to secondary disease 
spread), and finalizing eradication as soon as possible. 

When the iELISA was validated for BTM testing, Warnick et al. 
(2006) explained that, the probability of an infected herd classifying 
BTM positive was conditional on a 1-year disease history, because the 
surveillance programme classifies herds from four sequential measure-
ments, which are taken at 3-months intervals. We followed the same 
principle when annual HRPs were used. At the same time, it was also 
clarified that: on one hand, depending on the correlation between 
measurements from the same herd, applying test criteria based on the 
average of repeated BTM samples, can reduce the variability of the test 
parameter and thereby can increase testing accuracy. On the other hand, 
this benefit must be weighed against the disadvantage of errors, which 
can result from the influence of past herd́s status and previous test re-
sults on current classification (Warnick et al., 2006). 

The latter point means that, if strategy A is used as dependent of four 
tests, an example herd “X” which has been TI for a year and has had BTM 
values = 10,15,20, and 30 ODC%, would maintain the free status, 
because both criteria to be classified in level 1 (Section 2.1), would be 
fulfilled. In contrast, the same herd would lose the free status, if only the 
4th BTM value was considered and if cut-off 20 or 25 ODC% was used for 
the single milk sample classification. 

At the beginning of the surveillance programme, situations such as 
herd “X” were less likely to occur than in the current situation, because 
increases of BTM values could be noted more promptly, even earlier 
than a year from disease introduction. In other words, the increase of 20 
ODC% above the average of the previous measurements, could happen 
more easily due to lower antibody dilution. In 2006, when the study by 
Warnick et al. was carried out, the Danish dairy herds had a median size 
around 100 cows (Foddai et al., 2015), while in the current situation, 
higher antibody dilutions could be expected in HR herds, which are 
approximately three times bigger (Table 2). Hence in the current 
context, the original testing interpretation based on four consecutive 
BTM tests, could allow disease detection after relatively long infection 
(e.g. after one year or even more). Such a duration (or HRP) could be 
“too long”, especially for the very large HR herds, which could spread 
the disease to other farms meanwhile. 

In the initial phases of eradication programmes, when herd preva-
lence and PPV are high, it might be sufficient restricting a small per-
centage of TI herds, to show evident decreases of prevalence at country 
level, whilst limiting the number of herds under restriction. Unnecessary 
control measures are disruptive for farmers and could affect their will-
ingness to engage in the eradication scheme, whereas showing efficient 
decreases of prevalence (within short periods) can improve participa-
tion. When the iELISA was validated, the herds classification based on 
four consecutive BTM tests, offered the best compromise between the 
pros and cons mentioned above. This is evident by the steady reduction 
in prevalence observed from 2003 to 2015 (SEGES, 2021). Nowadays, 
with increased herd size and prevalence, a higher quarterly sensitivity 
(through additional blood testing) combined with an interpretation of 
BTM values based on a single quarter, may offer improvement of early 
detection for infected large HR herds. This could improve the early 
warning attribute (timeliness) of the system, and could minimize sec-
ondary disease spread (epidemiological consequences) from this kind of 
newly infected farms, while tolerating a small increase of FP errors 
(Table 5, SA4). 
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4.5. Limitations of the study 

Alternative risk-based classifications of herds could have been 
applied. For example, risk-based classifications that used the 3rd quartile 
or the 90th percentile ProbInf as cut-off between strata were investigated 
at the beginning of the study. In those cases, the number of herds clas-
sified at HR and the number of calves to test from them, were by far 
higher than those estimated for classifications I to III (Table 2). The 
number of HR herds would have been 536 and 318 respectively, and the 
number of calves to test would have been 4,010 and 2,214. Such clas-
sifications would have the advantage that most of the simulated 59 TI 
herds would be targeted by blood testing (45 and 37, respectively), but 
costs and number of FPs would be much higher (results not shown). 

The number of FN and FP herds could have been estimated in two 
different ways; i) using the predictive values, or ii) using the HSe and 
HSp, as we did in this study Eqs. (7) and ((8)). If data on herds tested 
with both strategies (A and B) had been available, the number of FNs 
could have been estimated by multiplying the number of herds that 
tested negative in each strategy, by the complementary probability of 
the negative predictive value (1-NPV). The number of FP herds could 
have been estimated by multiplying the number of test-positive herds in 
each strategy by the complementary probability of the positive predic-
tive value (1-PPV). Since strategy B was a hypothetical sampling strat-
egy, actual testing results from all 2,283 level 1 herds were only 
available for strategy A. Thus, the number of FNs and FPs were esti-
mated by combining the complementary probability of the median HSe 
and HSp, with the simulated number of (within-stratum) TI and TF herds 
Eqs. (7) and ((8)) 

Regarding the performance of the iELISA in BTM, we could not 
exclude cross-reactions to S. Typhimurium or other serovar in herds 
actually free of S. Dublin. Nevertheless, changes of BTM specificity were 
simulated as inversely related to: a) the BTMSe and b) the time elapsed 
between samplings (HRP). As the HRP increased the BTMSp decreased, 
and a truly S. Dublin free herd was (assumed) more likely to be classified 
as FP due to lowered temporal specificity. This assumption represented 
the situations where, a dairy herd which is truly free of S. Dublin but is 
infected with S. Typhimurium (or others) increases its chances of being 
“wrongly” classified positive (i.e. FP) to S. Dublin, with longer HRP; i.e. 
when the antibody prevalence against the alternative serovar of Sal-
monella increases in the milking group. 

The uncertainty around the iELISA specificity in individual blood 
could be considered problematic, because a small increase of animal 
level specificity, as that simulated passing from the original scenario in 
classification II (Sp = 95%) to SA1 (Sp = 99%), generated a remarkable 
decrease of FP high risk herds (-26) in strategy B (Table 5). Therefore, 
the number of FP estimated in the original classifications I to III 
(Table 5) could be overestimated, if the Sp = 99% is the closest value to 
the true Sp between those considered (Nielsen at al., 2004; Nielsen and 
Ersbøl, 2004). This uncertainty was taken into account in the sensitivity 
analysis. 

The deterministic simulation modelling approach investigated the 
uncertainty around the final outputs by using different inputs for both 
BTM and blood testing across scenarios, instead of using different iter-
ations and distributions within the same simulation, as it could be the 
case with stochastic simulation models, where outputs can be produced 
with their respective prediction intervals. On the other hand, in models 
composed of several variables (like ours), the running time of the sto-
chastic tools could be by far longer than in deterministic models and 
issues in separating impact of variability and uncertainty could arise. 
Moreover, when outputs of stochastic models are used to inform deci-
sion making, focus is usually addressed to the median/mean estimates of 
the simulations, rather than to their prediction intervals. Hence, the 
main results (i.e. the simulated median sensitivity, specificity, predictive 
values and classification errors) could be expected similar between the 
two modelling procedures. Since we expect the main outputs would 
have been similar between stochastic and deterministic modelling, and 

because variability and uncertainty were investigated in the sensitivity 
analysis, we preferred to pursue the modeĺs parsimony principle when 
choosing the deterministic approach. 

In addition, it must be noted that in each scenario, the temporal 
BTMSe and BTMSp were simulated with similar values for HR and LR 
herds. In reality, further differences could be present between herds of 
several different sizes, within and between risk strata. From that point of 
view, a simplification was applied due to missing knowledge on how 
seroprevalence could vary daily within the milking paddock of herds 
with different size and risk. This uncertainty could be reduced through 
disease-spread simulation studies (see perspectives below). However, 
we would expect that, since HR herds had median number of cows by far 
bigger than LR herds (Table 2), if the two herd types had been simulated 
with different BTMSe (higher for low risk herds) and BTMSp (higher for 
high risk herds), the benefits of changing from strategy A to B could have 
appeared even clearer. 

Furthermore, the variability of herd structure and size were partly 
included in the model by simulating all 2,283 level 1 dairy herds. 
Although currently the within-groups animal prevalence could be lower 
than those estimated by Nielsen, (2013b), we expect the relative risk of 
infection between age groups (the RRg values in the Appendix B) to be 
similar, due to similar dairy herd structure. 

Regarding the animal level design prevalence WGP and WHP, they 
were both set to 10%. This value was selected based on our knowledge of 
the epidemiology of S. Dublin in Danish dairy herds, and falls within the 
general used cut-off between 1 and 10% (Martin et al., 2007b; Cameron, 
2014), e.g. when the design prevalence is not defined as an input based 
standard by legislation. Across the 2,283 herds, the overall median 
number of old calves (3–6 months old) was 20, which should allow good 
timeliness of detection, if this group of animals is infected i.e. 10% WGP 
= 2 infected calves (d). In contrast, in large herds with 200 or more 
milking cows (Table 2), it would take longer to reach the detection limit 
of 10% antibody positives adults (d = 20). For that reason, the perfor-
mance of the iELISA on BTM samples was challenged in the sensitivity 
analysis. 

4.6. Perspectives 

The impact of the FN and of FP herds estimated in this study could be 
further assessed before deciding, which testing strategy to use in the 
Danish Salmonella Dublin eradication programme. For both strategies, 
disease spread simulation models could evaluate variability in temporal 
within-herd disease dynamics and the effects on surveillance outcomes, 
and could estimate the epidemiological consequences (e.g. in number of 
secondary cases) due to disease spread from FN herds during the HRP. 
Cost-benefit analysis is recommended to investigate the economic con-
sequences of secondary cases caused by FN herds and of false alarms in 
TF herds. 

5. Conclusion 

Our study found that the Danish Salmonella Dublin eradication pro-
gramme could benefit from adding blood testing of calves in large HR 
herds to the current BTM testing strategy, if HR herds were classified as 
those having ≥ 8 neighbours in level 2 and ≥ 200 cows (≈ 530 cattle). 
This could improve the timeliness of the system by earlier disease 
detection in these herds (e.g. within three months from infection). 
Consequently, the number of FN herds would be reduced compared to 
the current situation, where only BTM testing is used in level 1 herds. 
Nevertheless, the current strategy will classify a lower number of FP 
herds, while the alternative testing strategy based on additional blood 
testing, could result in more falsely restricted HR herds than today. Costs 
for additional blood testing and extra FPs identified in the alternative 
strategy, should be balanced against cost-of-error, e.g. the potential 
“extra” disease spread from FN herds, if the current testing scheme is 
maintained. This work paves the road for further studies of disease 

A. Foddai et al.                                                                                                                                                                                                                                  



Microbial Risk Analysis 19 (2021) 100184

10

spread simulation modelling and cost-benefit analysis, which could 
support a final decision on which testing strategy to prioritise, to finalise 
disease eradication in the shortest time and in the most cost-efficient 
manner. 
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Appendix of: Evaluation of risk-based surveillance strategies for Salmonella Dublin in Danish dairy herds by modelling temporal test 
performance and herd status classification errors 

List of abbreviations  

Abbreviation Meaning 
ARRHR Adjusted relative risk of herd infection within the high risk stratum 
ARRLR Adjusted relative risk of herd infection within the low risk stratum 
BTM Bulk tank milk 
CHR Cattle herd identification number 
d Number of simulated truly infected animals per group 
EPIg Within-group effective probability of infection 
EPIHR Effective probability of herd infection within the high risk stratum 
EPILR Effective probability of herd infection within the low risk stratum 
FN False negative herd 
FP False positive herd 
GSeOlderCalves Sensitivity obtained from testing just calves 3-6 months old when testing strategy B is used 
HR Herd at high risk of infection 
HRP High risk period elapsing between day of disease introduction to the herd and day of its detection 
HSe Herd sensitivity 
HSeParallel Overall herd sensitivity (HSe) in high risk herds when testing both calves and BTM, in testing strategy B 
HSp Herd specificity 
HSpParallel Overall herd specificity (HSp) in high risk herds when testing both calves and BTM, in testing strategy B 
iELISA Indirect Enzyme-Linked Immunosorbent Assay 
LR Herd at low risk of infection 
NPV Negative predictive value 
ODC% Background corrected proportion of the test sample optical density (OD) to a known positive reference sample 
PPV Positive predictive value 
ProbInf Probability the herd was infected in reality, estimated through logistic regression 
ProbInfAnimal Individual animal probability to be infected within an age group 
PrPHR Proportion of herds in the high risk stratum 
PrPLR Proportion of herds in the low risk stratum 
PrPanimals Proportion of animals per age group within a herd 
RR Relative risk of herd infection per population stratum 
RRg Relative risk of animal infection within an age group 
RRHR Risk of herd infection within the high risk stratum relative to the risk of infection within the low risk stratum 
RRLR Relative risk of herd infection within the low risk stratum (set as 1, for risk reference category) 
S. Dublin Salmonella enterica subsp. enterica serovar Dublin 
SA1, SA2, SA3 and SA 4 Sensitivity analysis scenarios 1, 2, 3 and 4 
SEGES Danish Agriculture & Food Council SEGES 
TF Truly disease free herd 
TI Truly infected herd 
WGP Within group prevalence 
WHP Within herd prevalence  

A. Estimating effective probability of herd infection within each stratum (EPIHR and EPILR) 
The effective probability of herd infection (Martin et al., 2007a; 2007b), within each herd risk stratum (LR = low risk and HR = high risk), was 

estimated as: 

EPILR= ProbInf ∗ARRLR (A.1) 
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EPIHR= ProbInf ∗ARRHR (A.2)  

Where, ProbInf represented the national median probability of herd infection (2.6%) reported in Section 2.1.3 and estimated through logistic 
regression (Section 2.1). Whereas ARRLR and ARRHR represented the adjusted relative risk of infection within the LR and the HR stratum respectively 
and were calculated as: 

ARRLR= 1 / (PrPLR+PrPHR∗RRHR) (A.3)  

ARRHR= ARRLR∗RRHR (A.4) 

The PrPLR and PrPHR were the proportions of cattle herds within each population stratum out of the total 2283 level 1 dairy herds. Whereas, RRLR 
and RRHR were the relative risk of infection in the LR and HR strata (Table 2). The RRLR was set = 1 because the LR herds had lower risk of infection 
than HR herds, and thus, the former represented the risk reference category. Whereas the RRHR was calculated as: the median ProbInf within the HR 
stratum divided by the median ProbInf within the LR stratum. 

B. Estimating effective probability of animal infection within herds infected in multiple groups 
For the 1783 dairy herds, where the (potential) overall within-herd design prevalence (WHP) was split across different age groups, we applied the 

same principles used at between-herds level, to estimate EPIHR and EPILR (Martin et al., 2007a; 2007b), but now considering: the proportion of animals 
located within each age group (PrPanimals) and the respective individual relative risk of infection (RRg). 

Accordingly, the within-group effective probability of infection (EPIg) was firstly estimated for each age group. Thereafter, the number of sero-
positive animals was simulated for each age group as d = rounded (EPIg * group size), so that the sum of all d values corresponded to the total number 
of seropositive animals simulated within the herd, according to WHP = 10% and herd size (in total cattle) reported in the data. 

Regarding the RRg values, it must be noted that young calves 0–3 months old were considered as the risk reference category with RRg = 1, because 
in this age group the seroprevalence is usually very low or not detectable (Nielsen, 2013b). Whereas the RRg within the other age groups, was 
calculated using the mean seasonal prevalence (here called ProbInfAnimal) reported by Nielsen (2013b). This was set at: 28.3%, 27.0% and 31.3%; for 
old calves, heifers-steers, and cows. For calves younger than three months, the ProbInfAnimal was set at 15.7% (the mid value between 0% and the 
value used for cows). Then, the RRg inputs used for older calves, heifers-steers and cows were (approximated): (28.3 / 15.7) = 1.8, (27.0 / 15.7) = 1.7 
and (31.3/ 15.7) = 2.0, respectively. 
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